Clustering Dynamic Spatio-Temporal Patterns in The Presence of Noise and Missing Data

نویسندگان

  • Xi C. Chen
  • James H. Faghmous
  • Ankush Khandelwal
  • Vipin Kumar
چکیده

Clustering has gained widespread use, especially for static data. However, the rapid growth of spatio-temporal data from numerous instruments, such as earth-orbiting satellites, has created a need for spatio-temporal clustering methods to extract and monitor dynamic clusters. Dynamic spatiotemporal clustering faces two major challenges: First, the clusters are dynamic and may change in size, shape, and statistical properties over time. Second, numerous spatio-temporal data are incomplete, noisy, heterogeneous, and highly variable (over space and time). We propose a new spatiotemporal data mining paradigm, to autonomously identify dynamic spatio-temporal clusters in the presence of noise and missing data. Our proposed approach is more robust than traditional clustering and image segmentation techniques in the case of dynamic patterns, non-stationary, heterogeneity, and missing data. We demonstrate our method’s performance on a real-world application of monitoring in-land water bodies on a global scale.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatio-temporal patterns of crab fisheries in the main bays of Guangdong Province, China

  Using a semi-balloon otter trawl, crab fisheries in the main bays of Guangdong Province, China, were carried out seasonally . A total of 70 species were found, all belonging to the South China Sea Faunal sub region in the tropical India-West-Pacific Faunal Region. The clustering and nMDS ordination analysis revealed the existence of three groups. Group 1 included Hailing Bay and four bays to ...

متن کامل

Spatio-temporal patterns of crab fisheries in the main bays of Guangdong Province, China

  Using a semi-balloon otter trawl, crab fisheries in the main bays of Guangdong Province, China, were carried out seasonally . A total of 70 species were found, all belonging to the South China Sea Faunal sub region in the tropical India-West-Pacific Faunal Region. The clustering and nMDS ordination analysis revealed the existence of three groups. Group 1 included Hailing Bay and four bays to ...

متن کامل

Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories

In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...

متن کامل

Spatio-temporal analysis of diurnal air temperature parameterization in Weather Stations over Iran

     Diurnal air temperature modeling is a beneficial experimental and mathematical approach which can be used in many fields related to Geosciences. The modeling and spatio-temporal analysis of air Diurnal Temperature Cycle (DTC) was conducted using data obtained from 105 synoptic stations in Iran during the years 2013-2014 for the first time; the key variable for controlling the cosine term i...

متن کامل

Context-aware Modeling for Spatio-temporal Data Transmitted from a Wireless Body Sensor Network

Context-aware systems must be interoperable and work across different platforms at any time and in any place. Context data collected from wireless body area networks (WBAN) may be heterogeneous and imperfect, which makes their design and implementation difficult. In this research, we introduce a model which takes the dynamic nature of a context-aware system into consideration. This model is con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015